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Suitability of real-time quantitative PCR to estimate the 
relative telomere length in European Hake (Merluccius 
merluccius Linnaeus, 1758)   
Estíbaliz López de Abechuco1, Manuel Soto2, Miguel Angel Pardo3, Mark 
Haussmann4 and Guzmán Díez1

Abstract
Telomere length measurement has been proposed as a promising tool to estimate the age of individuals 

in natural populations. We used real-time quantitative PCR (qPCR) to measure relative telomere length in 
four tissues (brain, kidney, liver and muscle) of European hake (Merluccius merluccius) in different groups 
based upon body length an otolith age estimate. We observed a high level of inter-individual differences in 
the measurements of relative telomere length in hakes of similar age and body length groups. The results 
of qPCR analysis showed a great variability in all measures and a lack of repeatability and reproducibility 
with significant statistical differences in the results of the different assays. The paper discusses the technical 
reasons for the variability in qPCR obtained in this work and by other authors. 

Keywords: telomere, ageing, hake, qPCR, stock assessment.

Resumen
En este trabajo se ha realizado la puesta a punto y la estandarización de las condiciones para la PCR a tiempo 

real (concentración de cebadores tel1b y tel2b, diseño de cebadores para el gen de copia única, perfiles térmicos) 
en diferentes órganos (cerebro, músculo, hígado y riñón) de merluza europea Merluccius merluccius. 

A continuación se diseñó una batería de ensayos en los mismos órganos procedentes de individuos con 
edades diferentes. El rango de tallas elegido fue de 250 mm a 750 mm, que se corresponde con una edad 
entre 2 y 7 años estimada a partir de la lectura de los anillos de los otolitos de los ejemplares analizados. 

No se ha encontrado ninguna tendencia clara en la medida de la longitud de los telomeros en ninguno 
de los órganos estudiados debido a la alta variabilidad interindividual observada en individuos de la misma 
edad. Estas diferencias interindividuales pueden deberse a factores biológicos-genéticos o ambientales pero 
también a las limitaciones del método en términos de reproducibilidad que se demostró con diferencias 
estadísticamente significativas en los resultados de los diferentes ensayos.

Palabras clave: telomero, estima de edad, merluza, qPCR, evaluación de stocks.
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Introducción
The determination of the age structure of fish commercial 

populations is essential for their management and conservation. 
However, current methods to estimate the age of important 
commercial fish species by means of traditional aging techniques 
such as otolith reading are proving not as reliable as once thought. 
This is especially noticeable in the European hake Merluccius 
merluccius due to the difficulty in counting and differentiating 

between the opaque and hyaline rings (García-Rodríguez and 
Esteban, 2002; Horn et al., 2010; Izzo, 2010; Morales-Nin 
and Aldebert, 1997; Piñeiro, 1997). Recent tagging studies in 
M. merluccius in the Bay of Biscay have also questioned the 
traditionally accepted growth rate for this species, as a result of 
overestimation of internationally agreed age-estimation criteria 
(de Pontual et al., 2003). Assumptions of stock dynamics based 
on inaccurate age estimation criteria could lead to incorrect 
predictions of the status of the stock and improper management 
advice to the fishery (Izzo et al., 2011b). 

Studies carried out in a wide variety of eukaryotic organisms 
have reported that telomeres shorten with age and that this 
shortening could be potentially used as a marker of biological age. 
This relationship has been shown in humans (Harley et al., 1990), 
mammalians (Izzo et al., 2011a, b; McKevitt et al., 2002), birds 
(Bize et al., 2009; Haussmann and Vleck, 2002; Haussmann and 
Mauck, 2008; Haussmann et al., 2003a; Haussmann et al., 2003b; 
Vleck et al., 2003, Horn et al., 2011) and reptiles (Hatase et al., 2008; 
Scott et al., 2006). In fishes, there is no agreement, as some studies 
find a significant relationship between telomere shortening and age 
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(Hartmann et al., 2009; Hatakeyama et al., 2008; McChesney et al., 
2005). whereas others do not (Horn et al., 2010; Izzo, 2010).

Telomeres are complexes of short tandem repeated sequences 
of non-coding DNA found at the end of eukaryotic chromosomes. 
Telomeres consist of a variable number of a short G-rich 
evolutionary conserved DNA sequence (TTAGGG)n, (de Lange et 
al., 1990; Hartmann et al., 2009; Haussmann and Vleck, 2002; 
Klapper et al., 1998; Meyne et al., 1989). The main function of 
telomeres is to maintain the structural stability of chromosomes 
protecting them from degradation and fusion events (Aubert and 
Lansdorp, 2008; Blackburn, 1990; Blasco, 2002) and to control of 
replicative senescence (Grabowski et al., 2005).

During the normal cell cycle the enzyme DNA polymerase is 
unable to replicate completely the end of the telomere, resulting in 
the loss of base pairs and telomere shortening (Chan and Blackburn, 
2003). This loss is compensated by the enzyme telomerase that 
consists of an RNA subunit (TERC, Telomerase RNA Component) 
which acts as a template and a catalytic protein subunit (TERT, 
Telomerase Reverse Transcriptase) that catalyzes the elongation of 
telomeres (Blackburn, 1990). The end-replication problem and the 
lack of telomerase activity are not the only factors that contribute 
to telomere shortening, heritable components or oxidative stress 
may also contribute to telomere loss (von Zglinicki, 2002).

In fishes, we still lack the basic knowledge of how telomere 
length is regulated (Hartmann et al. 2009). Nevertheless, some 
studies have determined telomerase activity in different tissues of 
rainbow trout (Oncorhynchus mykiss), channel catfish (Ictalurus 
punctatus), zebrafish (Danio rerio) or Japanese medaka (Oryzias 
latipes) as an indirect way to quantify aging and cell proliferation of 
these tissues (McChesney et al., 2005). Other studies have focused 
on the localization of repetitive telomeric sequences in different 
fish species to study chromosome evolution and speciation several 
species of sturgeon (Fontana et al., 1998), selachian (Rocco et 
al., 2001) Mugilidae (Gornung et al., 2004) or Atlantic salmon 
Salmo salar (Perez et al., 1999). Very recently, some studies have 
explored the relationship between age and telomere dynamics in 
the European sea bass, Dicentrarchus labrax, (Horn et al., 2008), 
O. latipes (Au et al., 2009; Hatakeyama et al., 2008), Killifish 
(Nothobranchius furzeri) (Hartmann et al., 2009), flathead 
(Platycephalus bassensis), snapper (Chrysophrys auratus) or 
golden perch (Macquaria ambigua) (Izzo, 2010). 

Knowledge of age in important commercial fish is necessary to 
improve information related to growth, reproduction, and overall 
stock health. More reliable age estimates would also allow more 
accurate calculations of a population’s age structure, and provide 
information of whether the population is increasing, stable or 
declining. 

Several experimental procedures have been developed to 
measure telomere length. Some of the most widely used methods 
like Telomere Restriction Fragments analysis (TRF) (Harley et al., 
1990), fluorescence in situ Hybridization methods Q-FISH (Zijlmans 
et al., 1997) or Flow-FISH (Rufer et al., 1998) are challenging, 
expensive and time-consuming (Callicott and Womack, 2006). In 
the last decade new techniques, including Single Telomere Length 
Analysis (STELA) (Baird et al., 2003), Telomeric-Oligonucleotide 
Ligation Assay (T-OLA) (Cimino-Reale et al., 2001) and Telomere 

measurement by quantitative PCR (qPCR) (Cawthon, 2002) have 
been developed to solve these drawbacks. 

In this work we have adapted the qPCR method to measure 
telomere length in European hake (Merluccius merluccius). 
The major advantages of this technique are that it is relatively 
simple, fast, less costly and highly sensitive being able to measure 
telomere length from very small amounts of DNA (Nakagawa et 
al., 2004). Since the publication of Cawthon’s technique in 2002 
it has proven its usefulness in many studies carried out in the field 
of biomedicine and epidemiology (Epel et al., 2004; O’Sullivan 
et al., 2006; Zhang et al., 2007). Recently, some authors have 
attempted to use this approach in ecological and evolutionary 
studies in turtles (Hatase et al., 2008), birds (Bize et al., 2009; 
Criscuolo et al., 2009) and fishes (Hartmann et al., 2009).

The main objective of the present work was to test whether 
the measure of telomere length by qPCR is a suitable technique 
to estimate the individual age and population age structure in 
different tissue samples of wild M. merluccius.

Materials and methods 

Sample collection

Female specimens (n=15) of M. merluccius were collected 
from commercial trawlers fishing in Bay of Biscay and Great Sole 
(Northeast Atlantic) in 2007 and 2008. Length, total weight, gutted 
weight and estimated age according to otolith reading of the selected 
specimens are shown in Table 1. Specimens ranged in age from 2 to 
8 years according to otolith reading and Age-Length Keys used by 
the International Council for the Exploration of the Seas (ICES) in 
the Divisions VIII a, b, c and d and VII (ICES, 2007, 2008). Because 
larger fish came from commercial boats without gonads we could 
not determine the gender of two individuals. Sagittal otoliths were 
also removed and stored in dry condition.

Table 1. �Summary of the biological data of the samples used in the assays 
and the groups of age classes. F: Female; Undet.: Undetermined.

Total length (cm) Estimated age (years) Sex

age class 1 26.5 2 F

26.7 2 F

27.6 2 F

27.9 2 F

 35.8 3 F

age class 2 42.3 4 F

43.6 4 F

44.3 4 F

45.3 4 F

 55.1 5 F

age class 3 62.3 6 F

64.0 6 F

64.1 6 F

65.0 6 Undet.

 75.4 7-8 Undet.
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DNA extraction

Tissue samples (brain, muscle, liver and kidney) from each 
individual were collected and stored in 1.5 ml eppendorf tubes 
at -20ºC until DNA extraction. Genomic DNA from all tissues 
was extracted using the Wizard Genomic DNA Purification kit 
(Promega Corporation, Madison, WI, USA). The integrity of DNA 
was checked by gel electrophoresis in 0.8 % agarose D-1 Medium 
EEO (Pronadisa, Conda Laboratory, Madrid, Spain) stained with 
Gel-Red (Biotium, Hayward, CA, USA), and after this the DNA 
was stored at -20ºC until its use.

Telomere length measurement by quantitative PCR

Telomere length measurement was carried out according 
to the qPCR method developed by Cawthon (2002) with some 
modifications in the primer design and concentration. The original 
primers designed by Cawthon were changed to have a similar GC 
content and closer melting temperatures (Cawthon, 2006; Gil and 
Coetzer, 2004).

As with the first designed primers, the optimized ones contained 
a mismatch every six bases in the 3’ to the 5’ direction. Since the 
last five bases of the 3’-end match perfectly to the target sequence, 
the DNA polymerase can synthesize the complementary strand to 
the telomeric sequences. The primer sequences were as follows:

te11b; 5’-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGG
TTTGGGTT-3’;

te12b; 5’-GGCTTGCCTTACCCTTACCCTTACCCTTACC
CTTACCCT-3’ (Callicott and Womack, 2006; Gil and Coetzer, 
2004). 

The telomere reaction contained 12.5 μl SYBR Green PCR 
Master Mix (Applied Biosystems, Warrington, UK), 250 nM 
of the tel1b and 200 nM of the tel 2b, 1 ng genomic DNA, and 
enough double-distilled water to yield a 25 μl reaction. 

The selected single copy gene to normalize the telomere PCR 
was the rhodopsin gene since this is one of the few sequences that 
has been obtained from hakes (GenBank accession no. EU492240, 
(Noren et al., 2008)). The rhodopsin gene is considered a single-
copy gene that encodes proteins in the photoreceptors of the eye 
and only in tetraploid fish such as salmonids, catastomids and the 
carp Cyprinus carpio more than one copy has been found (Bailey et 
al., 1978; Larhammar and Risinger, 1994). A pair of gene specific 
primers and a gene specific probe were designed with Primer Express 
software (Applied Biosystems, Foster City, CA) to amplify an 85 
bp amplicon. Forward and reverse primers for the hake rhodopsin 
gene were Rhod-F 5’-CGTGGCCTGGTACATCTTCA-3’ and 
Rhod-R 5’-ACGCCGGCAGGGTCAT-3’. The TaqMan probe 
was 5’-CACCAGGGCAGCATATTCGGACCC-3’. For the 
rhodopsin PCR, we added 12.5 μl TaqMan Master Mix (Applied 
Biosystems), 300 nM of the Rhod-F and 250 nM of the Rhod-R, 
150 mM of rhodopsin TaqMan probe, 1 ng genomic DNA, and 
enough double-distilled water to yield a 25-μl reaction. All samples 
were run in an Applied Biosystems 7000 Real-Time PCR System 
(Applied Biosystems, Foster City, CA). Thermocycler conditions 
for telomere qPCR were set at 95°C for 10 min followed by 25 
cycles of data collection at 95°C for 15 s, with 54°C annealing for 

2 min. The rhodopsin gene cycling conditions were 95°C for 10 
min followed by 40 cycles at 95°C for 15 s, with 54°C annealing 
for 2 min. 

A primer optimization matrix and an adjustment of the thermal 
cycling profile were performed for both reactions to obtain the 
most adequate concentration for each reagent and to establish the 
setting of each reaction selecting the ones that gave the lowest 
background in the minimum Ct. 

Each plate contained dilutions of five DNA concentrations 
(ranging from 10 ng to 0.01 ng) of tissues from the same reference 
hake. Each DNA sample and negative controls were analysed in 
quadruplicate, and specific DNA samples were analysed in the 
same wells for telomere and rhodopsin reactions. 

Results of each run were analysed using an ABI PRISM 7000 
SDS Software 1.0 (Applied Biosystems, Foster City, USA). 
The Ct values (the fractional cycle number at which the well’s 
accumulating fluorescence crosses a set threshold that is several 
standard deviations above baseline fluorescence) of the telomere 
and the single copy gene were calculated as the mean of the four 
aliquots of each tissue sample and sampling group. 

According to the qPCR equipment specifications if the mean 
of the Ct obtained for each sample had a standard deviation higher 
than 0.38, the aliquot of which Ct value increased the deviation of 
the mean obtained for each sample was rejected and the average 
recalculated. If there were more than two Ct values that deviated 
from the mean, then the entire qPCR plate was redone in order to 
minimize error in the assay. 

For each tissue, analysis regression lines for PCR (telomere 
and rhodopsin gene) were compared using the serial dilution of the 
reference sample. From the value of the slope, PCR efficiency was 
calculated according to the equation E=(10(-1/slope) − 1) × 100 where 
E is the PCR efficiency, and S is the slope of the standard curve. 
For the telomere PCR reaction the obtained efficiency ranged from 
89 and 113 % and for the rhodopsin gene reaction it was between 
91 to 99 %.

In order to know the factor by which a DNA sample differs 
from a reference DNA in its ratio of telomere repeat copy number 
(T) to a single copy gene number (S), T/S ratio was calculated 
according to the following formula: T/S = 2-iCt(2-iCtaverage)-1; 

iCt = increment of Ct
where iCt = Ct 

rhodopsin – Ct 
telomere

and iCt
average is the average of all the iCt obtained in the plate. 

The assay for each tissue and age class was performed on three 
different days under the same experimental conditions and placing 
the samples always in the same wells in each repetition and using 
four DNA replicates of each tissue. 

Otolith preparation and reading

The otolith preparation and age determination were in 
accordance with the methodology described in the EU BIOSDEF 
(Anon., 1998) and DEMASSESS international projects (Anon., 
2000). Each otolith was mounted in a black resin block and cut in 
a section of 0.5 mm. Sections were mounted on glass slides and 
read in a stereomicroscope. Otolith interpretation started from the 
nucleus towards the edge and only the hyaline rings were counted. 
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Rings were counted twice by two readers trained according to the 
experience obtained from international workshops on hake ageing 
studies.

Statistical analysis

Fisher’s Least Significant Difference (LSD) and Mann-
Whitney (Wilcoxon) tests were used to determine significant 
differences between T/S ratio obtained in eight DNA replicates 
of each tissue grouped in three different age classes (Table 1). 
For these analyses Statgraphics Plus 5.0 (Statpoint Technologies, 
Inc., Virginia, USA) and Microsoft Office Excel 2003 (Microsoft 
Corporation, USA) computing and graphics software were used.

Results 
Regression analysis was used to examine the relations between 

the dependent variables of telomere shortening (T/S ratio), and 
the age of hakes estimated by otolith reading and the independent 
variable of length size in each of the four tissues analysed (Figure 
1). The ratio obtained for each samples is a result of the medium 
value obtained after performing the assay on three different days.

The coefficient of determination (R2) between the estimated 
age by otoliths and length size of hakes was higher than 0.98 
indicating the increase of age estimated by the number of rings in 
the can be explained by the increase of the length of hakes.

It was observed high variability between the results of three 
qPCR replicas in all tissues analysed. Thus, in some samples the 
coefficient of variation of T/S ratio replica reached values higher 
as 31% in brain and muscle, 38% in kidney and 53% in liver. 

Discussion 
Many fish species, unlike mammals, show indeterminate 

growth coupled with slow senescence (Reznick et al., 2002; 
Woodhead, 1998) which makes the age estimation in these species 
very difficult. 

The variability of the qPCR method (Criscuolo et al., 2009; 
Hatase et al., 2008; Shen et al., 2007) didn´t allow estimating 
telomere length, and therefore we could not confirm nor reject 
correlation between age and relative telomere length. In the 
present study to reinforce the value of the test the qPCR analysis 
was repeated with the same aliquots and under the same conditions 
in three different time series showing a relatively high variation 
among the results obtained in the different repetitions. This poor 
repeatability is in agreement with the results studies that showed 
a lack of significant or low correlations among different measures 
and considerable variability among different batches of samples 
(Shen et al., 2007). 

Although many papers state the reliability of the qPCR method, 
the repeatability of this relative method is discussed, not often 
tested, reported or is relatively high (Bize et al., 2009; Horn et al., 
2010; O’Callaghan et al., 2008; Svenson and Roos, 2009). 

The qPCR it is a technique that does not provide an absolute 
measure of telomere length and needs the use of a single-copy-
gene as a reference to estimate the ratio by which the number of 
telomeric repeats differ in the number of copies of a single-copy-
gene. Thus, the precision of the method depends on the nucleotide 
sequence of single gene whose number of copies is assumed 
invariant under the experimental conditions (Lin and Yan, 2005). 

Figure 1. �Comparison of measures of telomere length. Combined linear regressions between TS-1 ratio and Age estimated by otolith reading vs Length in 
four tissues of Northern hake of different sizes. Upper equation in each plot belongs to the TS-1 ratio vs Length regression and lower equation to 
Age estimated by otolith vs Length.
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Besides in a qPCR analysis all telomeric sequences of different 
cells of a tissue sample are amplified in the same reaction. We 
do not know up to what point the heterogeneity of the different 
individual cells within the same tissue influence the results of this 
assay.

Some studies have also questioned the validity of the results 
published by other studies based upon the efficiency of the telomere 
reaction and the differences between the standard curve and the Ct 
values (Horn, 2008a; Zhang et al., 2007). Constant amplification 
efficiency is an important factor for reliable comparison between 
samples since small efficiency differences between two reactions 
can generate a false T/S ratio (Bustin et al., 2005; Dunshea et al., 
2011; Pfaffl, 2001). Although the deviation between the efficiencies 
of the samples run in the same day was generally in an acceptable 
range (± 10%) (Applied_Biosystems, 2003; Stratagene, 2004), 
the values for this parameter obtained in different days and in the 
same samples showed a high variability as well. 

Taken together, this suggests that the measurement of telomere 
length by qPCR method needs more methodological consensus 
and optimization to solve the methodological difficulties in 
telomere measures.

O’Callaghan et al. (2008) modified the qPCR method designed 
by Cawthon introducing a standard oligomer to obtain absolute 
measures of telomere lengths. This new approach provides more 
reproducible data than the relative method. Nonetheless, the use 
of this Absolute qPCR in Australian sea lions showed a coefficient 
of variation and a measure of precision of 47.16 % and 33.35 % 
respectively (Izzo et al., 2011b).

Recently, a new method developed by (Cawthon, 2009) 
has improved the reliability of the qPCR telomere assay. This 
improvement increases the correlation between the measure 
obtained by means of a multiplex qPCR and the TRF length 
measured by Southern blot. 
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