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Abstract

FLBEIA (FL Bio-Economic Impact Assessment) is an R package build
on top of FLR libraries. The purpose of the package is to provide a flex-
ible and generic simulation model to conduct Bio-Economic Impact As-
sessments of harvest control rule based management strategies under a
Management Strategy Evaluation (MSE) framework. As such, the model
is divided into two main blocks, the operating model (OM) and the man-
agement procedure model (MPM). In turn, these two blocks are divided
in 3 components. The OM is formed by the biological, the fleet and the
covariables components and the MPM by the observation, the assessment
and the management advice components.

The model is multistock, multifleet and seasonal and uncertainty is
introduced by means of montecarlo simulation. The algorithm has been
coded in a modular way to ease its checking and to make it flexible. The
package provides functions that describe the dynamics of the different
model components, under certain assumptions. In each specific model
implementation the user chooses which of the functions are used. Further-
more, if in a specific case study or scenario, for some of the components,
the functions provided within FLBEIA do not fulfill the requirements, the
user can code the functions that adequately describe the dynamics of those
components and use existing ones for the rest of the components. As the
user can construct its own model, selecting existing submodels and con-
structing new ones, we can define it as a framework more than as a model.
The package is still under development but most of its functionalities are
already available. At the moment there are no functions to model trophic
interactions but it is something planed in the short term. Main limitations
of the model are that the stocks must be age structured or aggregated in
biomass (length structure is not allowed) and that spatial dimension is not
considered explicitly. Spatial characteristics could be modeled assigning
stocks and/or fleets/metiers to specific areas.
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1 Introduction

The idea of FLBEIA comes from many applications developed to perform
bio-economic analysis in AZTI-Tecnalia to which pieces of code were re-
written in order to match with a specific case study or fishery. These
pieces, in many cases, reflect exactly the same processes with similar dy-
namics, that have to be slightly, adapted to these different case studies.

In order to avoid these cases we decided to develop not a model but
a framework in which a model is built. This model can be constructed
combining already existing functions or new ones can be constructed and
combined with existing ones. This idea comes from the fact that there
is no an universal model that can be applied to address all fishery man-
agement issues. The choice of the model to be used is dependent on the
questions asked, which implies that any model can be considered valid for
all purposes.

Furthermore, big advances have been seen in the last years in bio-
economic modelling, in which models such as Fishrent [Salz et al., 2011],
Fcube [Ulrich et al., 2011], FcubeEcon [Hoff et al., 2010] and many others
can be cited. But also theoretical and sometimes partial assessments have
been developed. In that sense, FLBEIA pretends not to create new models
or processes but to integrate many of them in a common bio-economic
impact assessment framework as a package of FLR [Kell et al., 2007].

FLR [Kell et al., 2007] was built with the goal of developing a common
framework to facilitate collaboration within and across disciplines (e.g.
biological, ecological, statistical, mathematical, economic, and social) and,
in particular, to ensure that new modelling methods and software are more
easily validated and evaluated, as well as becoming widely available once
developed.

FLBEIA package is built on top of existing FLR packages. It is an R

package [R Development Core Team, 2010] developed to conduct Bio-
Economic Impact Assessments, that is, to identify the potential economic
and biological consequences of a proposed policy action, to support policy
making.

It has been built under Management Strategy Evaluation framework
[Butterworth and Punt, 1999, Butterworth, 2007, De la Mare, 1998, Punt
and Donovan, 2007, Rademeyer et al., 2007]. It contains a collection
of functions and new S4 classes developed to facilitate the simulation of
fishery systems response to different types of management strategies.

The main characteristics of FLBEIA package are:

� It is coded in a generic, flexible and extensible way.

� Provides functions to condition the simulations, to run them and to
analyze the results.

In fact, a mayor effort has been set on the second functionality, namely
the simulation model.

The main characteristics of the BEIA simulation model are:

� The model is fully biological-economic coupled and provides fully
integrated bio-economic assessment.
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� The model deals with multi-species, multi-fleet and multi-metier sit-
uations.

� The model can be run using seasonal steps (smaller or equal to one
year).

� It is generic, flexible and extensible.

� Uncertainty can be introduced in almost any of the parameters used.

A conceptual diagram of the model is shown in figure 1. The simula-
tion is divided in two main blocks: the Operating Model (OM) and the
Management Procedure Model (MPM). The OM is the part of the model
that simulates the real dynamics of the fishery system and the MPM is
the part of the model that simulates the whole management process.

Figure 1: Conceptual diagram of BEIA

The OM has three components that can interact among themselves:

1. The biological populations or stocks.

2. The fleets.

3. The covariables. They can be of any nature; environmental, eco-
nomical or technical.

The MPM has also three components:

1. The data collected from the OM.

2. The observed population obtained through the application of a set
of assessment models to the observed data.
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3. The management advice obtained from the application of harvest
control rules (HCR) to the observed populations.

The model is built modularly with a top-down structure that has, at
least, four levels:

1. In the first level (top level), there is only one function, BEIA function.
It calls the functions on the second level in a determined order and it
links the main components (stocks, fleets, covariates, data, observed
population and management advice) of the OM and MPM.

2. The functions in the second level correspond with the components
in the figure 1. The OM components project the objects one sea-
son forward: biols.om projects the stocks, fleets.om projects the
fleets and covars.om projects the covariables. The MPM compo-
nents generate the objects necessary to produce the management
advice, they generate the objects based on OM objects and they
operate at most once a year: observation.mp generates the data,
assessment.mp generates the observed population and advice.mp

generates the management advice. They take the input objects and
returns only those related to the component they belong to.

3. The functions in the third level define the specific dynamics of each
component and they are chosen by the user in each simulation. They
are always called by a second level function and in some cases they
call fourth level functions, for example a function that describes the
dynamics of an age structured population can call a stock recruit-
ment function. In this way, a function used to describe age struc-
tured populations can be combined with different stock recruitment
relationships.

4. The functions in the fourth level are called by functions in the third
level and are used to model the most basic processes in the simula-
tion. They are coded as a function and selected by the user because
it could be interesting to use the same third level function together
with different fourth level functions, as in the case of age structured
population and stock recruitment functions.

This top down structure allows us to avoid the classical structure of
separated biological and economic (and social) modules (that could be
integrated or not). When designing the model, we can think out only
at what level do we want to include a particular characteristic, and this
decision is independent of being a biological or an economic characteristic.

FLBEIA is prepared to incorporate new third and lower level com-
ponents or to modify them, while first and second level ones are fixed.
Changing first or second level functions would imply a different approach,
but existing third and lower level functions would be usable.

In the next two sections, BEIA’s conceptual model and its specifica-
tions will be explained. The conceptual model will characterize the main
components as well as the feedbacks and loops among them. The model
specification, will describe the components, the functions by level, the cur-
rently available third and four level functions and how to use them within
the FLBEIA package.
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2 The Concept of BEIA

As commented above the simulation model has been divided in two main
blocks, the Operating Model (OM) and the Management Procedure Model
(MPM). This division is part of the requirements of the MSE approach,
that is, mathematical representations of the real world (OM), the observed
world (MPM) and the interactions between them.

2.1 Operating Model

The OM is the part of the model that simulates the real dynamics of the
fishery system. It is divided in three components or operating models, the
biological operating model, the fleets operating model, and the covariables
operating model.

It runs in seasonal steps, projecting the components in each step.
Firstly, the biological component is updated, secondly the fleet compo-
nent and finally the covariable component.

Biological component: The biological component simulates the pop-
ulation dynamics of the biological populations, the stocks. The number
of populations is, in principle, unlimited. The limitation could come from
memory problems with R and/or the operating system. The stocks can
be described as age structured populations or as biomass dynamic pop-
ulations, length structured populations models are not supported by the
simulation algorithm. Each stock can follow a different population dy-
namics model and is projected independently. It does not mean that
there cannot interdepend between them but the order in which these bi-
ological components are updated has to be decided and it will affect the
results obtained.

Fleet component: The fleet component simulates the behaviour and
dynamics of the individual fleets. As the number of the stocks, the number
of fleets is in principle unlimited. The limitation could come from memory
problems with R and/or the operating system used. The activity of the
fleets is divided into metiers. The metiers are formed by trips that share
the same catchability for all the stocks caught. Fishing effort of the fleets
and their effort share among metiers are independently updated for each
fleet in each season.

There is also defined a capital dynamics that annually updates the
capacity and/or catchability of the fleets according to their economic per-
formance, independently for each fleet.

Covariates: This part of the model is intended to incorporate all the
variables that are not part of the biological or fleet components and that
affect any of the operating model components or the management process.
The number of covariates is, in principle, unlimited. The limitation could
come from memory problems with R and/or the operating system used.
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Links among and within components: The links within the OM
components are not restricted by the general settings of the simulation
model. If the modeller decides to include these links, we will have:

� The link within the biological component is that catch affects abun-
dance.

� The link within the fleets component is that fleets’ capacity affects
fishing effort.

� The link between the biological and fleets components is that fishing
effort and fish abundance affects catches.

+++++ REPASAR ESTE PARRAFO SOBRE LINKS ES CONFUSO
Again, it should be reminded that the use or not of these links is under

the discretion of the modeller.

2.2 The management procedure model

The Management Procedure Model (MPM) is divided into 3 components:
the observation, the assessment and the management advice. The ob-
servation component produces the necessary data to run the assessment.
Then, the assessment component is applied to the data to obtain the ob-
served populations. Finally, the management advice component produces
a management advice based on the observed populations. MPM procedure
is applied yearly in the appropriate season of the year. Not necessarily
in the last season. For example, it can be simulated management going
from the mid-season of the one year to the mid-season of the next year (as
occurs in the case of the Bay of Biscay anchovy). Performing multi-annual
advice is also possible.

Observation component: The observation component generates the
necessary objects to run the assessments. Three types of objects can be
generated:

� Stocks.

� Fleets.

� Abundance indices.

Stocks and abundance indices objects are generated independently,
stock by stock, whereas fleets are observed jointly. These observed objects
are generated based on the components of the OM to which a variation is
introduced. This variation can be due to:

� Introducing uncertainty to the OM variables, or

� adjusting the OM variables to the assessment model requirements
which is going to be used in the next step (e.g. collapsing the di-
mensions -age, season,...)

� adjusting the OM variables to the legal conditionings (TACs, quotas,
TAE, discards,...)

Assessment component: Assessment models are applied on a stock
by stock basis and they can vary from stock to stock.
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Management advice component: The management advice com-
ponent produces a set of indicators (determined by the user) useful for
policy making. The management advice is produced based on the output
obtained from the observation and assessment components. The advice is
first applied at single stock level and then (after that) it can be applied
at fleet level.

3 Running BEIA

3.1 First level function: BEIA

The simulations are run using BEIA function. This function is a multistock,
multifleet and seasonal simulation algorithm coded in a generic, flexible
and extensible way. It is generic in the sense that can be applied to any
case study that fit into the model restrictions. The algorithm is made
up by third and fourth level functions specified by the user. Apart from
existing functions new ones can be defined and used if necessary. This is
the reason to define it as flexible and extensible.

To determine the simulation the third- and fourth-level functions must
be specified. For this end, in the main function call, there is a control ar-
gument associated to each second level function. These control arguments
are lists which include, apart from the name of the functions to be used in
the simulations, any extra argument needed by those functions that are
not contained in the main arguments.
BEIA function is called as follows:

BEIA(biols, SRs, BDs, fleets, covars, indices, advice,

main.ctrl, biols.ctrl, fleets.ctrl, covars.ctrl,

obs.ctrl, assess.ctrl, advice.ctrl)

Main arguments:

biols : An FLBiols object. The object must be named and the names
must coincide with those used in SRs object, BDs object and catches

slots within FLFleetExts object.

SRs : A list of FLSRsim objects. This object is a simulation version of
the original FLSR object. The object must be named and the names
must coincide with those used in FLBiols object. For details on this
object see the figure in the annex.

BDs : A list of FLBDsim objects. This object is similar to FLSRs object but
oriented to simulate population growth in biomass dynamic popu-
lations. The object must be named and the names must coincide
with those used in FLBiols object. For details on this object see the
figure in the annex.

fleets : An FLFleetExts object. This object is almost equal to the orig-
inal FLFleet object but the FLCatch object in catch slot has been
replaced by FLCatchExt object. The difference between FLCatch and
FLCatchExt objects is that FLCatchExt has two extra slots alpha and
beta used to store Cobb-Douglas production function parameters, α
and β, [Cobb and Douglas, 1928, Clark, 1990]. α corresponds with
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effort’s exponent and β with that of biomass. The FLFleetExts ob-
ject must be named and the names used must be consistently used
in the rest of the arguments. For details on this object see the figure
in the annex.

covars : An FLQuants object. This object is not used in the most basic
configuration of the algorithm. Its content is totally dependent on
the third or lower level functions that make use of it.

indices : A list of FLIndices objects. Each element in the list corre-
sponds with one stock. The list must be named and the names must
coincide with those used in FLBiols object.

advice : A list. The class and content of its elements depends on func-
tions used in fleet.om to simulate fleets’ effort and the functions
used to produce advice in advice.mp.

Control arguments:

main.ctrl : Controls the behavior of the main function, BEIA.

biols.ctrl : Controls the behavior of the second level function biols.om.

fleets.ctrl : Controls the behavior of the second level function fleets.om.

covars.ctrl : Controls the behavior of the second level function co-

vars.om.

obs.ctrl : Controls the behavior of the second level function observa-

tion.mp.

assess.ctrl : Controls the behavior of the second level function assess-

ment.mp.

advice.ctrl : Controls the behavior of the second level function ad-

vice.mp.

3.2 Second level functions

3.2.1 Biological Component: biols.om

The call to the function within BEIA is done as:

biol.om(biols, fleets, SRs, BDs, covars, biols.ctrl, year,

season)

This function projects the stocks one season forward. The projection
is done independently stock by stock by the third level function specified
for each stock in biols.ctrl object. Currently, there are three popula-
tion dynamics functions implemented, one corresponding to age structured
populations, ASPG, the second one to biomass dynamic populations, BDPG
and another one to fixed populations given as input, fixedPopulation.
These functions do not include predation among stocks, but this kind of
models could be implemented and used in the algorithm if necessary.
Control arguments:

biols.control : This argument is a list which contains the necessary
information to run the third level functions that are called by bi-

ols.om. The elements depend on the third and lower level functions
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used to describe the dynamics of the stocks. The list must contain
at least one element per stock and the name of the element must
coincide exactly with the name used in biols argument so it can be
used to link the population with its dynamics model. At the same
time, each of these elements must be a list with at least one element,
dyn.model, which specifies the name of the function used to describe
population dynamics.

When only ASPG and/or BDPG functions are used the biols.ctrl

object is just a list with one element per stock. And these elements
are lists with just one element, dyn.model, specifying the name of
the function used to describe population dynamics, ASPG, BDPG or
fixedPopulation. For example:

> biols.ctrl

$NHKE

$NHKE$dyn.model

[1] "ASPG"

$CMON

$CMON$dyn.model

[1] "BDPG"

$FAKE

$FAKE$dyn.model

[1] "ASPG"

3.2.2 Fleets Component: fleets.om

The call to fleets.om function within BEIA is done as:

fleets.om(fleets, biols, covars, advice,

fleets.ctrl, year, season)

This function projects the fleets one season forward. The main ar-
gument, fleets, is an object of class FLFleetsExt (for more detail see
section 3.1)

The function is divided in three processes related to fleet dynamics:
the effort model, the price model and the capital model. Effort and capital
models are fleet specific, whereas price model is fleet and stock specific.
First, fleets.om calls the effort model and it updates the slots related
to effort and catch. The effort models are called independently fleet by
fleet. Then, fleets.om calls the price model in fleet by fleet and stock by
stock basis. The price model updates the price slot in the fleets object.
Finally, the function calls the capital model, but the call is done in the
last season of the year. Thus, investment and disinvestment is only done
annually. The capital model is called independently fleet by fleet.

Effort model: This part of the model simulates the tactical behaviour
of the fleet every season and iteration. In each time step and itera-
tion, the effort exerted by each individual fleet and its effort-share
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among metiers is calculated depending on the stock abundance, man-
agement restrictions or others. After that, the catch produced by
the combination of effort and effort-share is calculated and dis-

cards, discards.n, landings, landings.n slots are filled. Other
variables stored in fleets.ctrl could also be updated here, for ex-
ample quota.share, as a result of the exerted effort.

The effort model is specified at fleet level, so each fleet can follow
a different effort model. At the moment there are 4 functions avail-
able, fixedEffort, SMFB, SSFB and MaxProf.StkCnst. To write
new functions for effort, it must be taken into account that the in-
put arguments must be found among fleets.om function arguments
and that the output must be a list with updated FLFleetsExt and
fleet.ctrl objects, i.e.:

list(fleets = my_fleets_obj, fleet.ctrl = my_fleet.ctrl_obj)

Price Model: The price model updates the price-at-age at stock, metier
and fleet level in each time step and iteration.

At the moment, there are 2 functions available, fixedPrice and
elasticPrice. To write new functions for price it must be taken into
account that the input arguments must be found among fleets.om

function arguments and that the output must be a list with an up-
dated FLFleetsExt object.

Capital Model: This module is intended to simulate the strategic be-
haviour of the fleets, namely, the investment and disinvestment dy-
namics. The model is applied at fleet level and in an annual basis
and can affect fleets’ capacity and catchability. Catchability could
be modified through investment in technological improvement and
capacity as a result of an increase (investment) or decrease (disinvest-
ment) in the number of vessels. Changes in fleets’ capacities could
produce a variation in quota share among fleets, for example. Thus,
the corresponding change would have to be done in fleets.ctrl

object.

At the moment, there are 2 functions available, fixedCapital and
SCD. To write new functions for capital dynamics, as for effort and
price, it must be taken into account that the input arguments must
be found among fleets.om function arguments and that the output
must be a list with updated FLFleetsExt and fleets.ctrl objects.

Control arguments:

fleets.ctrl : The most simple example of fleet dynamics model and
hence the most simple fleets.ctrl object correspond with the model
where all the parameters in fleets object are given as input and
maintained fixed within the simulation. This is obtained using the
third level functions, fixedEffort, fixedPrice and fixedCapital

which do not need any extra arguments. In the case of two fleets,
FL1 and FL2, where FL1 catches 3 stocks, ST1, ST2 and ST3 and FL2

catches ST1 and ST3 stocks, the fleets.ctrl could be created using
the following code:
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>fleets.ctrl <- list()

# The fleets

>fleets.ctrl[['FL1']] <- list()

>fleets.ctrl[['FL2']] <- list()

# Effort model per fleet.

>fleets.ctrl[['FL1']]$effort.dyn <- 'fixedEffort'

>fleets.ctrl[['FL2']]$effort.dyn <- 'fixedEffort'

# Price model per fleet and stock.

>fleets.ctrl[['FL1']][['ST1']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL1']][['ST2']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL1']][['ST3']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL2']][['ST1']]$price.dyn <- 'fixedPrice'

>fleets.ctrl[['FL2']][['ST3']]$price.dyn <- 'fixedPrice'

# Capital model by fleet.

>fleets.ctrl[['FL1']]$capital.dyn <- 'fixedCapital'

>fleets.ctrl[['FL2']]$capital.dyn <- 'fixedCapital'

> fleets.ctrl

$FL1

$FL1$effort.dyn

[1] "fixedEffort"

$FL1$ST1

$FL1$ST1$price.dyn

[1] "fixedPrice"

$FL1$ST2

$FL1$ST2$price.dyn

[1] "fixedPrice"

$FL1$ST3

$FL1$ST3$price.dyn

[1] "fixedPrice"

$FL1$capital.dyn

[1] "fixedCapital"

$FL2

$FL2$effort.dyn

[1] "fixedEffort"
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$FL2$ST1

$FL2$ST1$price.dyn

[1] "fixedPrice"

$FL2$ST3

$FL2$ST3$price.dyn

[1] "fixedPrice"

$FL2$capital.dyn

[1] "fixedCapital

3.2.3 Covariables Component: covars.om

covars.om projects covars object one season forward. covars object is
a named list and the class and dimension of each element will depend on
the function used to project it into the simulation.

The call to covars.om function within BEIA is done as:

covars.om(biols, fleets, covars, advice,

covars.ctrl, year, season)

Internally, for each element in the covars list, it calls to the third level
functions specified in the covars.ctrl object. At the moment, there exist
2 third level functions: fixedCovar, which is used to work with variables
that are input parameters not updated within the simulation and ssb.get,
which is used to get the real abundance of one of the simulated stocks.

This way of working could be useful, for example, for environmental
variables such as sea surface temperature that could affect catchability or
recruitment in the fleet and biological operating models respectively and
that are external to fishery system.

A covariable with a non-trivial dynamics could be the abundance of
certain animal which is not commercially exploited by the fleet, but which
abundance affects the natural mortality of any of the exploited stocks.
In this case, 2 extra functions will be needed, the function that defines
the dynamics of the covariable and the function that models the natural
mortality of the stock as a function of the abundance of the animal. The
first function should be declared in covars.ctrl argument and the former
one in biols.ctrl argument as a stock dynamics model.
Control arguments:

covars.ctrl : This argument is a named list with one element per co-
variable and the names of the list must match those used to name
the covars object. Each of the elements is, at the same time, a list
with, at least, one element, dyn.model, which defines the dynamics
of the covariable in question.
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3.2.4 Observation Component: observation.mp

The observation component generates the necessary data to run the as-
sessment models. The main function is observation.mp and it calls third
level functions which generate 3 possible objects, a FLStock, a FLIndices

or a FLFleetsExt object. The FLStock and FLIndices objects are gener-
ated independently for each stock and the FLFleetsExt object jointly for
all the fleets.

The call to observation.mp function within BEIA is done as:

observation.mp(biols, fleets, covars, indices, advice,

obs.ctrl, year)

The output of observation.mp is a list with 3 elements. The first
element, stocks, is a named list with one element per stock and its names
correspond with those used in the biols object. The elements of the
stocks list are of class FLStock or NULL, if a FLStock is not needed to
run the assessment. The second element, indices, is a named list with
one element per stock and its names correspond with those used in biols

object. The elements of the indices list are of class FLIndices or NULL,
if a FLIndices is not needed to run the assessment. The third element,
fleets.obs, is an observed version of the original fleets object. The
segmentation of the fleet in the observed version would be different to the
real one (in this moment there is no third level function implemented to
generate observed fleets). +++++ LO VAMOS A IMPLEMENTAR A
CORTO PLAZO O CAMBIAMOS LA REDACCION DEL TEXTO?

As the management process is currently run in a yearly basis, the
unit and season dimensions are collapsed in all the observed objects.
Moreover, if the management process is being conducted at the end of
year y the observed objects extend up to year y-1, whereas they extend
up to year y in the cases when management process is conducted in any
other season as it happens in reality.
Control arguments:

obs.ctrl : This argument is a list with one element per stock. If fleets
were observed the object should have also one element per fleet but
as at the moment there are no functions that provide observed ver-
sion of FLFleetsExt object this option is not described here. The
obs.ctrl object must be a named list where the names used corre-
spond with those used in the FLBiols object. Each stock element
is, at the same time, a list with two elements (stockObs and in-

dicesObs) and this two elements are once again lists. A scheme
of obs.ctrl object is presented in Figure 2. +++++ REVISAR
FIGURA (notación incorrecta)

The stockObs element is a list with the arguments necessary to run
the third level function used two generate the FLStock object. In
the list there must be at least one element, stockObsModel, with the
name of the third level function that will be used two generate the
FLStock object. If it is not required to generate a FLStock object
NoObject should be assigned to stockObsModel argument and this
function will return the NULL object.
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Figure 2: obs.ctrl object scheme

The indicesObs element is a list with one element per index in the
FLIndices object. Each element of the list is, at the same time,
a list with the arguments necessary to run the third level function
used to generate the FLIndex object. In the list there must be at
least one element, indexObsModel, with the name of the third level
function that will be used two generate the FLIndex object. If it
is not required to generate a FLIndices object indicesObs element
will be set equal to NoObject instead of a list and this will return
the NULL object instead of a FLIndices for the corresponding stock.

3.2.5 Assessment Component: assessment.mp

The assessment component applies an existing assessment model to the
stock data objects generated by the observation model (FLStock and
FLIndices). The assessment models are applied stock by stock, inde-
pendently.

The call to assessment.mp function within BEIA is done as follows:
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assessment.mp(stocks, fleets.obs, indices, assess.ctrl,

datayr)

The output of the function is a list of FLStocks with harvest, stock.n
and stock slots updated. Within FLBEIA no new assessment models are
provided, but the models already available in FLR can be used.
Control arguments:

assess.ctrl : This argument is a named list with one element per stock,
where the names must coincide with those used in biols object.
The elements must have at least one element, assess.model, which
defines the name of the assessment model to be used for each stock.
Furthermore, if the assessment model to be used is non-trivial (not
NoAssessment), the list must contain a second argument control

with the adequate control object to run the assessment model.

3.2.6 Management Advice Component: advice.mp

The Management Advice component generates an advice based on the
output of assessment and/or observation components.

The call to advice.mp function within BEIA is done as follows:

advice.mp(stocks, fleets.obs, indices, covars, advice,

advice.ctrl, year, season

First, the advice is generated stock by stock, independently. Later a
function that generates advice based on the single stock advices, observed
fleets and others could be applied, FCube like approaches [Ulrich et al.,
2011]. The output of the function is an updated advice object.

Depending on the structure of the third level functions used to generate
advice and to simulate fleet dynamics, the advice could be an input advice
(effort, temporal closures, spatial closures -implicitly through changes in
catchability-...) or an output advice (catch).

advice object : The structure of this object is open and it is completely
dependent on the third level functions used to describe fleet dynam-
ics and to generate the advice. For example, if SMFB and annualTAC

are used to describe fleet dynamics and generate the advice respec-
tively, advice is a list with two elements, TAC and quota.share. TAC
is an annual FLQuant with the quant dimension used to store stock
specific TACs and, quota.share is a named list with one element
per stock being the elements FLQuant-s with quant dimension used
to store fleet specific annual quota share.

Control arguments:

advice.ctrl : This argument is a named list with one element per stock
and one more element for the whole fleet. The names must coincide
with those used to name biols object and the name of the extra
argument must be fleets. The elements of the list are, at the same
time, lists with at least one element, HCR, with the name of the model
used to generate the single stock and fleet advice depending on the
case.
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3.3 Third level functions

3.3.1 Population growth functions

fixedPopulation: Fixed Population function. In this function
all the parameters are given as input, because there is not any population
dynamics simulated.

ASPG: Age Structured Population Growth function. The func-
tion ASPG describes the evolution of an age structured population using
an exponential survival equation for existing age classes and a stock-
recruitment relationship to generate the recruitment. The recruitment
can occur in one or more seasons. However, the age is measured in inte-
ger years and the seasonal cohorts are tracked separately. The seasonal
cohorts and their corresponding parameters are stored in the ’unit (u)’
dimension of the FLQuant-s. And all the individuals move from one age
group to the following one in the 1st of January. Thus, being φ the recruit-
ment function, RI the reproductive index, N the number of individuals,
M the natural mortality, C the catch, a0 the age at recruitment, s0 the
season when the recruitment was spawn, and a, y, u, s the subscripts for
age, year, unit and season respectively, the population dynamics can be
written mathematically as:

If s = 1,

Na,y,u,1 =


φ (RIy=y−a0,s=s−s0) a = a0

(Nia · e−
Mia

2 − Cia) · e−
Mia

2 a0 < a < A

(NiA−1 · e
−

MiA−1
2 − CiA−1) · e−

MiA−1
2 +

(NiA · e
−

MiA
2 − CiA) · e−

MiA
2 a = A,

(1)
where ia = (a − 1, y − 1, u, ns), iA−1 = (A − 1, y − 1, u, ns) and iA =

(A, y − 1, u, ns).
If s > 1,

Na,y,u,s =

{
φ (RIy=y−a0,s=s−s0) a = a0

(Nia · e−
Mia

2 − Cia) · e−
Mia

2 a0 < a < A
(2)

where ia = (a, y, u, s− 1)
And the reproductive index RI is given by:

RIy−a0,s =
∑
a

∑
u

(N · wt · fec · spwn)a,y−a0,u,s (3)

where wt is the mean weight, fec +++++ and spwn +++++.
+++++ DORLETA: por favor revisa la formula anterior (e.g. SSB =∑
a

∑
u(N ·wt · fec · exp− (M ·Mspwn +F ·Fspwn))), otros ejemplos?????

Depending on what is stored in the fec slot, RI can be SSB or any other
reproductive index of the population. The stock-recruitment relationship
φ is specified in the model slot of corresponding FLSRsim object. FLSRsim

object enables modeling a great variety of stock-recruitment relationships
depending on its functional form and seasonal dynamics.
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BDPG: Biomass Dynamic Population Growth function. The
function BDPG describes the evolution of a biomass dynamic population,
i.e. a population with no age, stage or length structure. The population is
aggregated in biomass, B, and the growth of the population, g is a function
of the current biomass and the catch C. The model is mathematically
described in equation 4:

Bs,y =

{
Bs−1,y + g(Bs−1,y)− Cs−1,y s 6= 1,
Bns,y−1 + g(Bns,y−1)− Cns,y−1 s = 1.

(4)

NOTATION!!! Because BEIA is seasonal the equation depends on sea-
son. The growth model g and its parameters are specified, respectively, in
the model and params slot of corresponding FLBDsim class. Currently only
Pella and Tomlinson model [Pella and Tomlinson, 1969] is implemented
to model growth, but new models can be defined if needed. The following
parameterization of the growth model has been implemented:

g(B) = B · r
p
·
[
1−

(
B

K

)p]
(5)

3.3.2 Effort models

fixedEffort: Fixed Effort model. In this function all the param-
eters are given as input except discards and landings (total and at age).
The only task of this function is to update the discards and landings (to-
tal and at age) according to the catch production function specified in
fleets.ctrl argument.

Two arguments need to be declared as elements of fleets.ctrl if
this function is used, effort.dyn = ’fixedEffort’ and catch.equation.
The last argument is used to specify the catch production function that
will be used to generate the catch. Note that both arguments must be
declared at fleet level (i.e fleets.ctrl[[fleet.name]]$effort.dyn and
fleets.ctrl[[fleet.name]]$catch.model) and that catch production
model corresponds with a fourth level function.

SMFB: Simple Mixed Fisheries Behavior. This model is a sim-
plified version of the behavior of fleets that work in a mixed fisheries
framework. The function is seasonal and assumes that effort share among
metiers is given as input parameter.

In each season, the effort of each fleet, f , is restricted by the seasonal
landing quotas or catch quotas of the stocks that are caught by the fleet.
The following steps are followed in the calculation of effort:

1. Compare the overall seasonal quota,
∑
f Qf,s,st · TAC, with the

abundances of the stocks. If the ratio between overall quota and
abundance exceeds the seasonal catch threshold, γs,st, reduce the
quota share in the same degree. Mathematically:

Q′f,s,st =

Qf,s,st if
∑

f Qf,s,st·TAC
Bs,st

≤ γs,st,
Qf,s,st · Bs,st·γs,st∑

f Qf,s,st·TAC
otherwise.

(6)
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2. According to the catch production function calculate the efforts cor-
responding to the landing or catch quotas, Q′f,s,st · TAC, of the
individual stocks, {Ef,s,st1 , . . . , Ef,s,stn}.

3. Based on the efforts calculated in the previous step, calculate an
unique effort, Ef,s. To calculate this effort there are the following
options:

max: The maximum among possible efforts, Êf,s = maxj=1,...,n Ef,s,stj

min: The minimum among possible efforts, Êf,s = minj=1,...,n Ef,s,stj

mean: The mean of possible efforts, Êf,s = meanj=1,...,nEf,s,stj
previous: The effort selected is the effort most similar to previous

year effort on that season,

Êf,s =

{
Ef,s,st :

∣∣∣∣1− Ef,s,st
Ef,y−1,s

∣∣∣∣ = min
j=1,...,n

∣∣∣∣1− Ef,s,stj
Ef,y−1,s

∣∣∣∣}
stock.name: The effort corresponding to stock.name is selected:

Êf,s = Ef,s,stock.name

4. Compare the effort, Êf,s, with the capacity of the fleet, κf (capacity
must be measured in the same units as effort and it must be stored
in the capacity slot of the FLFLeetsExt object). If the capacity
is bigger, then the final effort is unchanged and if the capacity is
smaller, the effort is set qual to the capacity, i.e.:

Ef,s =

{
κf if κ < Êf,s,

Êf,s if κ ≥ Êf,s.
(7)

5. The catch corresponding to the effort selected is calculated for each
stock and compared with the corresponding quota. If the catch is
not equal to the quota and the season is not the last one, the sea-
sonal quota shares of the rest of the seasons are reduced or increased
proportionally to their weight in the total share. The shares are
changed in such a way that the resultant annual quota share is equal
to the original one. In case the difference between actual catch and
that corresponding to the quota exceeds the quota left over in the
rest of the seasons, the quota in the rest of the seasons is canceled.
Mathematically for season i where s ≤ i ≤ ns′:

Q′′f,i,st = max

(
0, Q′f,i,st + (Q′f,s,st −Q′′f,s,st) ·

Q′f,i,st∑
j>sQ

′
f,j,st

)
(8)

where Q′ denotes the quota share obtained in the first step and Q′′

the new quota share.

The fleets.ctrl argument in SMFB function

SMFB function requires several arguments at global and fleet level that
are described below.

Global arguments:
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catch.threshold : This element is used to store γs,st parameter de-
scribed in the first step of SMFB function algorithm. The elements
must be a FLQuant object with dimension [stock = nstk, year =

ny, unit = 1, season = ns, area = 1, iter = nit], where the
names in the first dimension must match with those used to name
FLBiols object. Thus, the thresholds may vary between stocks, sea-
sons, years and iterations. The elements of the object are proportions
between 0 and 1 that indicate the maximum percentage of the stock
that can be caught in each season. The reason to use this argument
is that it is reasonable to think that it is impossible to fish all the fish
in the sea. Thus, although the TAC is very large the actual catch
will be restricted to γs,st ·Bs,st.

seasonal.share : A named FLQuants object, one per stock, with the pro-
portion of the fleets’ TAC share that ’belongs’ to each season, so the
sum along seasons for each fleet, year and iteration is equal 1. The el-
ements must be FLQuant objects with dimension [fleet = nf, year

= ny, unit = 1, season = ns, area = 1, iter = nit], where the
names in the first dimension must match with those used to name
FLFleetsExt object. The names of the FLQuants must match stock
names.

Fleet level arguments:

effort.dyn : ’SMFB’.

effort.restr :’max’, ’min’, ’mean’,’previous’ or ’stock.name’ (the
name of one of the stocks caught by the fleet).

max : The fleet will continue fishing until the catch quotas of all the
stocks are exhausted.

min : The fleet will stop fishing when the catch quota of any of the
stocks is exhausted.

previous : Among the efforts obtained under each stock restric-
tion the effort most similar to the previous year effort will be
selected.

stock : The fleet will continue fishing until the catch quota of
’stock’ is exhausted. (This could correspond, for example, with
a situation where the catch of one stock is highly controlled.)

These options are explained mathematically above when the SMFB

function is described step by step.

restriction : ’catch’ or ’landings’. Are the efforts calculated ac-
cording to catch or landings restriction? (for the moment only catch
restriction is available).

Fleet/Stock level arguments:

catch.model : The name of the fourth level function which gives the
catch production given effort and biomass (aggregated or at age).
The function must be coherent with SMFB and the function used to
simulate the population growth. At the moment, two functions are
available CobbDouglasAge and CobbDouglasBio.
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SSFB: Simple Sequential Fisheries Behavior. Simple sequen-
tial fisheries behaviour is related to those fleets whose the fishing profile
changes with the season of the year. SSFB function models the behaviour
of fleets that work in a sequential fisheries framework. It is assumded that,
in each season, the fleet, f , has only one target species or stock, st, thus
the metier, m, is defined on the basis of the season and target species,
resulting only in one target species per each metier.

In each season s, the effort allocated to each species st or metier m
follows the historical trend (in order to capture the seasonality of each
species fishing season), but is restricted to the remaining catch quota of
the fleet.

Therefore, production function is applied at metier level, but the pro-
duction has some restrictions, in both catches C and effort E, that are
described through following steps:

1. Calculate the total quota that corresponds to each fleet, CQ, from
the historical data and estimate remaining quota for the fleet, RQs,f,st,
deducting the catches from previous seasons.

RQs,f,st = CQf,st −
∑
ss<s

Css,f,st = TAC ·QSf,st −
∑
ss<s

Css,f,st

Where QS is the quota share and C are the catches.

2. Compare the total remaining quotas with the abundances of the
stocks. If the ration between remaining quotas and abundance ex-
ceeds the seasonal catch thershold, γs,st, reduce the remaining quota
in the same degree.

RQ′s,f,st =

{
RQs,f,st , if

∑
f Qs,f,st

Bs,st
≤ γs,st;

RQs,f,st · Bst,s·γs,st∑
f RQs,f,st

, otherwise.

3. Initially expected effort, Ês,f , is shared between different metiers
(i.e. species) month by month on the basis of historical seasonal
effort pattern.

Ês,m,st = Ês,f · Es,m = κf · PEDs,f · Es,m

Where Es,m is the effort share by metier, PEDs,f is the percentage
of effective days and κf is the fleet’s capacity.

4. Expected catches ,Ĉs,m,st, corresponding to that initial effor, are
calculated through tha catch production function at metier and stock
level, seasonally. The production function is the well-known Cobb
Douglas.

5. If the expected catches resulting from the previous step is higher
than the remaining quota corresponding to each metier (step 2),
there is extra effort which has to be reallocated between the other
species.

If Ĉs,f,st > RQs,f,st ⇒ Ĉs,f,st = RQs,f,st ⇒ Es,m,st < Ĉs,m,st;

else Ĉs,f,st ≤ RQs,f,st ⇒ Ĉs,f,st = Cs,f,st ⇒ Es,m,st = Ĉs,m,st.
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6. The reallocation of remaining effort, Ês,m,st − Es,m,st, can be per-
formed in differnt ways:

� Proportionally to the price and availability of the species in a
given season

� Proportionally to the effort allocated to the remaining metiers

7. This is repeated stock by stock until no effort remains to be allocated
or all the TACs are exhausted

+++++ SONIA: comprobar si descripción del objeto ADVICE por si
redundancia The advice argument in SSFB function

quota.share: A named FLQuants object, one per stock, with the total
proportion of TAC that ’belongs’ to each fleet each year. The ’fleet’
dimension names must match fleets’ names. And the FLQuants must
match stock names. For each and iteration the sum of the propor-
tions must be equal to 1. (FLQuant (fleet = nf, year = ny, unit

= 1, season = 1, area =1, iter =1)).

+++++
The fleets.ctrl argument in SSFB function:
Global arguments:

catch.threshold : A FLQuant object with dimension [stock=nst, year

= ny, unit = 1, season = ns, area =1, iter =nit], which con-
tains the proportion of biomass that total catch of stock cannot ex-
ceed, i.e. the previously mentioned γs,st parameter.

Fleet level arguments:

fleet.dyn : ’SSFB’

restriction : ’catch’. Relate to quota threshold.

effectiveDay.perc : A FLQuant object with dimension [quant=1, year

= ny, unit = 1, season = ns, area =1, iter =nit], which con-
tains the proportion of days expected to be effective in a season (i.e.
in which the fleet will go out fishing), the previously mentioned PED
parameter.

effort.realoc : NULL or ’curr.eff’. Element used to describe how does
the remaining effort have to be reallocated between the rest of the
metiers which already have remaining quota for the target stock.

NULL : The same proportion to each metier.

month.price : Proportionally to the expected effort share.

MaxProfit.stkCnst: Maximization of profit under a TAC
constraint. Calculates the total effort and the effort share along metiers
that maximizes the profits of the fleet. The maximization is done under
two constrainst (the capacity of the fleet and the quota-share of one of
the stocks caught by the fleet):

� The total effort can be higher than the fleet capacity (measured in
the same units as the effort).
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� The catch of one of the stocks can exceed the quota share of that
stock.

Objective function:

max
E,γ1,...,γnmt

∑
m

∑
st

∑
a

(
qm,st,a ·Bβm,st,a

st,a · (E · γm)αm,st,a

)
·prm,st,a−E·γm·V Cm−FC

(9)
+++++ DORLETA: describir los parámetros de la ecuación

With the constraints:

0 ≤ γi ≤ 1,

E ≤ κ,
Cst ≤ QSst

3.3.3 Price Models

fixedPrice. The prices are given as input data and are unchanged
within the simulation. Only the function name, FixedPrice, must be
specified in price.dyn element in fleets.ctrl object.

fleets.ctrl[[fleet.name]][[stock.name]][['price.dyn']] <-

'FixedPrice'

elasticPrice. This function implements the price function used in
Kraak et al. [2004]:

Pa,y,s,f = Pa,0,s,f ·
(
La,0,s,f
La,y,s,f

)ea,s,f

(10)

This function uses base price, Pa,0,s,f , and base landings, La,0,s,f to
calculate the new price Pa,y,s,f using a elasticity parameter ea,s,f , (e ≥
0). If the base landings are bigger than current landings the price is
increased and decreased if the contrary occurs. a, y, s, f correspond to the
subscripts for age, year, season and fleet respectively. For simplicity, the
iteration subscripts has been obviated, but all the elements in the equation
are iteration dependent. As prices could depend on total landings instead
of on fleet’s landings, there is an option to use La,0,s instead of La,0,s,f in
the formula above.

Although price is stored at metier and stock level in FLFleetsExt, this
function assumes that price is common to all metiers within a fleet and it
is calculated at fleet level.

The fleets.ctrl argument in fixedPrice function

When elasticPrice is used, the following arguments must be speci-
fied, at fleet and stock level (i.e. fleets.ctrl[[fleet.name]][[stock.name]]):

price.dyn : ’fixedPrice’.
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pd.Pa0 : An array with dimension [age = na, season = ns, iter =

it] to store base price, Pa0sf .

pd.La0 : An array with dimension [age = na, season = ns, iter =

it] to store base landings, La0sf .

pd.els : An array with dimension [age = na, season = ns, iter =

it] to store price elasticity, easf .

pd.total : Logical. If TRUE the price is calculated using total landings
and if FALSE the landings of the fleet in question are used to estimate
the price.

3.3.4 Capital Models

fixedCapital. The capacity and catchability are given as input data
and are unchanged within the simulation. Only the function name, Fixed-
Capital, must be specified in capital.dyn element of fleets.ctrl ob-
ject.

fleets.ctrl[[fl.name]][[stk.name]][['capital.dyn']] <-

'FixedCapital'

SCD: Simple capital Dynamics. In this simple function catchabil-
ity is not updated, it is an input parameter, and only capacity is updated
depending on some economic indicators. The following variables and in-
dicators are defined at fleet and year level (fleet and year subscripts are
omitted for simplicity):

FuC : Fuel Cost.

CrC : Crew Cost.

V aC : Variable Costs.

FxC : Fixed Costs (repair, maintenance and other).

CaC : Capital Costs (depreciation and interest payment).

Rev : Revenue:
Revf =

∑
m

∑
s

∑
a

Lm,s,a · Pa,s

where L is the total landings, P the price and m, s, a the subscripts
for metier, season and age respectively.

BER : Break Even Revenue, the revenues that make profit equal to 0.

BER =
FxC + CaC

1− FuC
Rev
− CrC

Rev−FuC + FuC·CrC
Rev·(Rev−FuC)

− V aC
Rev

In principle the investment, Inv, is determined by:

Inv0 =
Rev −BER

Rev
But not all the profits are dedicated to increase the fleet, thus:

Inv = η · Rev −BER
Rev
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where η is the proportion of the profits that is used to buy new vessels.
Furthermore, investment in new vessels will only occur if the operational
days of existing vessels is equal to maximum days. If this occurs, the
investment/disinvestment decision, Ω, will follow the rule below:

Ωy =


Inv if Inv0 < 0 and η · |Inv0| < ω1,

−ω1 ∗ κy−1 if Inv0 < 0 and η · |Inv0| > ω1,

Inv if Inv0 > 0 and η · |Inv0| < ω2,

ω2 ∗ κy−1 if Inv0 > 0 and η · |Inv0| > ω2.

(11)

where ω2 stands for the limit on the increase of the fleet relative to the
previous year, and ω1 for the limit on the decrease of the fleet relative to
the previous year.

3.3.5 Covariables Models

fixedCovar. The covariables that follow this model are given as input
data and are unchanged within the simulation. Only the function name,
FixedCovar, must be specified in covar.dyn element of covars.ctrl ob-
ject.

covars.ctrl[[covar.name]]<- ’FixedCovar’

ssb.get. +++++ SONIA: completar

3.3.6 Observation Models: Catch and biological parame-
ters

The functions in this section are used to generate a FLStock from FLBiol

and FLFleetsExt objects. The former is used to fill the slots relative to
biology, (***.wt, mat and m slots), and the last to fill the slots relative
to catch, landings and discards. harvest, stock and stock.n slots are
leave empty and harvest.spwn and m.spwn are set equal to 0.

age2ageDat. This function creates an age structured FLStock from age
structured FLBiol and FLFleetsExt objects. The slots catch, catch.n,
catch.wt, discards, discards.n, discards.wt, landings, landings.n,
landings.wt, m, mat, harvest.spwn and ’m.spwn’ of the FLStock object
are filled in the following way:

m : m slot in FLBiol object multiplied by varia.mort where varia.mort

is an FLQuant with dimension [age = na, year = ny, unit = 1,

season = 1, area = 1, iter = it]. varia.mort is used to intro-
duce multiplicative uncertainty in the observation of natural mortal-
ity.

mat : fec slot in FLBiol object multiplied by varia.fec where varia.fec
is an FLQuant with dimension [age = na, year = ny, unit = 1,

season = 1, area = 1, iter = it]. varia.fec is used to intro-
duce multiplicative uncertainty in the observation of fecundity.
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landings.n : Landings at age are obtained from fleets object, sum-
ming them up along seasons, units, metiers and fleets. After sum-
ming up, two sources of uncertainty are introduced, one related
to aging error and the second one related to misreporting. Aging
error is specified through error.ages argument, an array with di-
mension [age = na, age = na, year = ny, iter = it]. For each
year and iteration, each element (i,j) in the first 2 dimensions
indicates the proportion of individuals of age i that are wrongly
assigned to age j, thus the sum of the elements along the first di-
mension must be equal to 1. For each year and iteration, the real
landings at age are multiplied matricially with the corresponding
sub-matrix of error.ages object. Afterwards, the second source
of uncertainty is introduced multiplying the obtained landings at
age by varia.ltot, an FLQuant with dimension [age = na, year =

ny,unit = 1, season = 1, area = 1, iter = it]. Once uncer-
tainty is introduced in landings at age and weight at age, the to-
tal landings are computed an compared with the TAC. If landings
are lower than ′TAC · TAC.ovrsht′ the observed landings at age are
unchanged, but if they were higher, the landings at age would be
reduced by 1

TAC.ovrsht
where TAC.ovrsht is a positive real number.

landings.wt : Landings weight at age is derived from fleets object,
averaging it along seasons, units, metiers and fleets. After averaging,
2 sources of uncertainty are introduced, one related to aging error
and the second one related to misreporting. Aging error is the same
as the one used in the landings at age. For each year and iteration,
the real weight at age is weighted by the proportion of landings in
each age group and multiplied matricially with the corresponding
sub-matrix of error.ages object. Afterwards, the second source
of uncertainty is introduced multiplying the obtained weight at age
by varia.dwgt an FLQuant with dimension [age = na, year = ny,

unit = 1, season = 1, area = 1, iter = it].

discards.n : Observed discards at age are obtained in the same way
as the landings but summing up the discards instead of landings
and using, in the second source of error, the object varia.dtot, an
FLQuant with dimension [age = na, year = ny,unit = 1, season

= 1, area = 1, iter = it]. The object error.ages is the same
as the one used in the derivation of landings at age.

discards.wt : Observed weight at age is obtained in the same way as
the landings but averaging along discards weight instead of land-
ings weight and using, in the second source of error, the object
varia.dwgt, an FLQuant with dimension [age = na, year = ny,unit

= 1, season = 1, area = 1, iter = it]. The object error.ages
is the same as the one used in the derivation of landings at age.

discards, landings : Observed discards and landings are derived from
observed landings and discards at age and their corresponding weight.

catch, catch.n, catch.wt : These slots are derived from the observed
landings and discards at age and their corresponding weight.
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bio2bioDat. This function creates a FLStock aggregated in biomass
from FLBiol and FLFleetsExt objects aggregated in biomass.

m, mat, landings.n, landings.wt, discards.n, discards.wt , catch.n,
catch.wt: NA

discards : The discards are summed up along fleets and metiers and then
uncertainty (observation error) is introduced using a multiplicative
error. This multiplicative error is specified through varia.tdisc

argument an FLQuant with dimension [quant = 1, year = ny,unit

= 1, season = 1, area = 1, iter = it].

landings : Observed landings are derived in the same way as discards but
the argument used to introduce uncertainty is called varia.tland

in this case. Once uncertainty is introduced in landings, they are
compared with the TAC. If the landings are lower than ′TAC ·
TAC.ovrsht′ the observed landings are unchanged but if there were
higher the landings would be reduced by 1

TAC.ovrsht
, where TAC.ovrsht

is a positive real number.

catch : This slot is equal to the sum of landings and discards.

age2bioDat. This function creates a FLStock aggregated in biomass
from age structured FLBiol and FLFleetsExt objects. The function works
exactly in the same way as bio2bioDat function.

3.3.7 Observation Models: Population

This type of models are useful when no assessment model is used in the
next step of the MPM and management advice is just based on the pop-
ulation ’observed’ in this step. age2agePop, bio2bioPop and age2bioPop

are equal to their relatives in the previous section but in this case stock
numbers, stock biomass and harvest are observed, with or without error,
depending on the arguments given.

NoObsStock. This function is used when the advice is given indepen-
dently to stock status. Therefore, we do not need to observ the population.

perfectObs. This function creates a FLStock from FLBiol and FLFleet-

sExt objects. The FLBiol and FLFleetsExt objects can be either aggre-
gated in biomass or age structured and the returned FLStock object will
have the same structure, but with unit and season dimensions collapsed.
This function does not introduce any observation uncertainty in the ob-
servation of the different quantities stored in the FLStock or FLFLeetsExt
objects. Slots relative to biological parameters are calculated averaging
across units and seasons, those relative to catch summing up across units
and seasons and numbers at age or biomass are taken from the start of
the first season, except recruitment that is obtained summing up the re-
cruitment produced along seasons. Finally, fishing mortality is calculated
numerically from numbers at age and natural mortality.
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age2agePop. This function operates exactly in the same way as its
counterpart in the previous section, age2ageDat, but it also fills stock.n,
stock.wt, stock and harvest slots:

stock.n : First, the numbers at age are calculated as in perfectObs

function and then 2 sources of uncertainty are introduced, as it is
done in landings and discards at age. The error attributed to aging
error is given by the same argument as in landings and discards at
age, error.ages. The second uncertainty is introduced in the same
way but by different argument, varia.ntot.

stock.wt : First, the weight at age is calculated as in perfectObs func-
tion and then 2 sources of uncertainty are introduced, as it is done
in weight at age of landings but replacing landings by stock numbers
at age. The error attributed to aging error is given by the same
arguments as in landings, error.ages. The second uncertainty is
introduced in the same way but by different argument, varia.ntot.

stock : This is equal to the sum of the product of stock.n and stock.wt.

harvest : Harvest is numerically calculated from stock numbers at age
and natural mortality.

bio2bioPop. This function operates exactly in the same way as its
counterpart in the previous section bio2bioDat but it also fills stock and
harvest slots:

stock : Stock biomass is calculated multiplying n andt wt slots in the
FLBiol object and summing up along seasons (note that unit di-
mension is always equal to 1 in populations aggregated in biomass).
After, that uncertainty in the observation is introduced multiply-
ing the obtained biomass by the argument varia.btot, which is an
FLQuant with dimension [quant = 1, year = ny, unit = 1, sea-

son = 1, area = 1, iter = it]

harvest : Harvest is calculated as the ratio between catch and stock
biomass.

age2bioPop. This function operates exactly in the same way as its
counterpart in the previous section age2bioDat, but it also fills stock and
harvest slots. These two slots are calculated as in bio2bioPop function
but summing up along ages in the case of stock slot.

3.3.8 Observation Models: Abundance Indices

Currently, there are 2 functions that simulate abundance indices, one that
generates age structured abundance indices ageInd and a second one that
generates abundance indices in biomass bioInd. The last one can be
applied to both age structured and biomass dynamic populations. In
both cases a linear relationship between the index and the abundance is
assumed being the catchability q the slope, i.e:

I = q ·N or I = q ·B
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ageInd. Age structured abundance indices are obtained multiplying the
slot n of FLBiol with the catchability of the index (catch.q in FLIndex

object). The FLIndex is an input object and the index slot is yearly
updated. Two sources of uncertainty are introduced, one related to aging
error and a second one related to random variation. Aging error is the
same as in the observation of landings at age and the argument is the same
error.ages. Afterwards the second source of uncertainty is introduced
multiplying the index by the slot index.var of the FLIndex object. The
indices do not need to cover the full age or year ranges.

bioInd. Biomass abundance indices are generated in the same way as
age structured indices but without the error associated to age.

NoObsInd. This function is used when abundance indices are not re-
quired.

3.3.9 Observation Model: Fleets

At this point there are no functions to observe the fleets, their catch or
catch at age is just observed in an aggregated way in the functions defined
in previous section. In the short term it is not planned to write such a
function. This function would be useful to be able to test Fcube [Ulrich
et al., 2011] like approaches in management advice module.

3.3.10 Management Advice Models

Different management advice models have been implemented. Some of
them are methods generally applicable (e.g. fixedAdvice, annualTAC,
IcesHCR and annexIVHCR), whereas others are designed specifically for
specific case studies (e.g. FroeseHCR, ghlHCR, aneHCRE and neaMAC_ltmp)

fixedAdvice. This function is used when the advice is fixed and inde-
pendent to the stock status. TAC or TAE values should be given as input
in the advice object.

annualTAC. This function mimics the typical harvest control rule (HCR)
used in recovery and management plans implemented in Europe. The
function is a wrapper of the fwd function in FLash library. As fwd is
only defined for age structured populations within FLBEIA a new function
fwdBD has been coded. fwdBD is a tracing of fwd but adapted to work with
populations aggregated in biomass. The advice is produced in terms of
catch, i.e TAC. The call to annualTAC function within BEIA is done as:

annualTAC(stocks, advice, advice.ctrl, year, stknm, ...)

If the management is being running in year y, the function works as
follows:

1. Project the observed stock one year forward from 1st of January of
year y up to 1st of January of year y+1 (intermediate year).
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2. Apply the HCR and get the TAC for year y+1. Depending on the
definition of the HCR the stock could be projected several years
forward.

advice.ctrl for annualTAC

HCR : ’annualTAC’.

nyears : Number of years to project the observed stock from year y-1.

wts.nyears : Number of historic years to be used in the average of biolog-
ical parameters. The average is used in the projection of biological
parameters.

fbar.nyears : Number of historic years to be used in the average of
selection pattern. The average is used in the projection of selection
pattern.

f.rescale : Logical. If TRUE rescale to status quo fishing mortality.

disc.nyears : Number of years over which to calculate mean for dis-

cards.n and landings.n slots.

fwd.ctrl : Element of class fwdControl. For details on this look at the
help page in FLash object. The only difference is the way the years
are introduced. As this object is defined before simulation and it is
applied year by year, the definition of the year should be dynamic.
Thus the following convention has been taken:

� year = 0 indicates the year when management is taking place,
(intermediate year).

� year = -1 corresponds with one year before the year when man-
agement is taking place. In this case, whithin annualTAC func-
tion, coincides with the year up to which data is available, (data
year). Then, -2 would indicate 2 years before,-3 would indicate
3 years before and so on.

� year = 1 corresponds with one year after the year when man-
agement is taking place. In this case, whithin annualTAC func-
tion, coincides with the year for which management advice is
going to be produced, (TAC year). Then, 2 would indicate 2
years after the year when management is taken place, 3 would
indicate 3 years after and so on.

In this way, within the simulation, each year, the intermediate year
is summed up to the year in the original control argument and the
correct year names are obtained.

advice : catch or landings. Is the TAC given in terms of catch or
landings?

sr : The stock recruitment relationship used to project the observed stock
forward, not needed in the case of population aggregated in biomass.
sr is a list with 3 elements, model, params and years. model is
mandatory and the other 2 are complementary, if params is given
years is not necessary. model can be any stock-recruitment model
defined for FLSR class. params is a FLPar model an if specified it
is used to parameterized the stock-recruitment model. years is a
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numeric named vector with 2 elements ’y.rm’ and ’num.years’, for
example c(y.rm = 2, num.years = 10). This element is used to
determine the observeds years to be used to estimate the parameters
of the stock recruitment relationship. In the example the last 2
observations will be removed and starting from the year before to
the last 2 observed years 10 years will be used to estimate the stock-
recruitment parameters.

growth.years : This argument is used only for stocks aggregated in
biomass and it indicates the years to be used in the estimation of
annual population growth. This growth is used to project the pop-
ulation forward.
growth.years is a numeric named vector with 2 elements ’y.rm’

and ’num.years’ which play the same role played in sr[[’years’]]

argument defined in the previous point.

IcesHCR. +++++

FroeseHCR. +++++

annexIVHCR. +++++

ghlHCR. +++++

aneHCRE. ++++

neaMAC_ltmp. +++++

3.4 Fourth level functions

These functions are called by the third level functions and, for the time
being, are the functions in the lowest level within FLBEIA.

3.4.1 Stock-Recruitment relationships

Stock-recruitment relationships are used, for example, within ASPG and
annualTAC functions. The stock-recruitment relationship used in ASPG is
defined in the slot model of FLSRsim and it defines the true recruitment
dynamics of the stocks. Within annualTAC, the stock-recruitment rela-
tionship used is defined in:

advice.ctrl[[’stknm’]][[’sr’]][[’model’]]

element and it describes the ’observed’ stock-recruitment dynamics (used)
in the management process.

In FLCore package there are several stock-recruitment relationships
already defined and all can be used within FLBEIA. Some of the functions
available are:
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bevholt : Beverton and Holt model with the following parameterization:

R =
α · S

(β + S)

where α is the maximum recruitment (asymptotically) and β is the
stock level needed to produce the half of maximum recruitment α/2.
(α, β > 0).

bevholt.ar1, ricker.ar1, shepherd.ar1 : Beverton and Holt, Ricker
and Shepherd stock-recruitment models with autoregressive normal
log residuals of first order. In the model fit the corresponding stock-
recruitment model is combined with an autoregressive normal log
likelihood of first order for the residuals. If Rt is the observed re-
cruitment and R̂t is the predicted recruitment, an autoregressive
model of first order is fitted to the log-residuals, xt = log(Rt/R̂t).

xt = ρ · xt−1 + ε

where ε ∼ N(0, σ2
ar).

geomean : Recruitment is independent of the stock and equal to the geo-
metric mean of historical period.

R = α = n
√
R1 · . . . ·Rn

ricker : Ricker stock-recruitment model fit with the following parame-
terization:

R = α · S · e−β·S

where α is related to productivity and β to density dependence. α
is the recruit per stock unit at small stock levels. (α, β > 0).

segreg : Segmented regression stock-recruitment model fit:

R =

{
α · S if S < β,

α · β if S ≥ β.

α is the slope of the recruitment for stock levels below β, and α · β
is the mean recruitment for stock levels above β. (α, β > 0).

shepherd : Shepherd stock-recruitment model fit:

R = α · S

(1 + (S/β)γ)

This model generalizes Beverton and Holt and Ricker models, (γ = 1
corresponds with Beverton and Holt model, γ > 1 takes a ricker-like
shape and with γ < 1 the curve rises indefinitely).

There could be more stock-recruitment relationships defined in FLCore,
thus, if you are interested in using a model not defined here take a look
at SRModels help page in FLCore package. New stock-recruitment models
to be used in FLSRsim class can be defined in two ways:
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1. Using a formula in slot model:

rec ∼ Φ(X)

where Φ is a function of ssb and parameters and covariables stored
in params and covar slots respectively.

2. Defining a function in R, foo <- function(X), and using the name
of the function, foo, in slot model. The function arguments must
be among ssb and parameters and covariables stored in params and
covar slots respectively.

+++++ Tenemos definidas varias relaciones SR para nuestros casos
de estudio (e.g. hockstick, redfishRecModel, aneRec_pil, pilRec_ane,
ctRec_alb). Las metemos también en el manual??? +++++

3.4.2 Catch production functions

The catch production functions can be different for the same third level ef-
fort model. Currently, there are two catch production functions available,
both correspond with Cobb-Douglas production functions [Clark, 1990,
Cobb and Douglas, 1928] but in one case the model operates at stock
level and in the second one at age class level.

CobbDouglasBio: Cobb-Douglas production function at stock
level. The total catch of the fleet is calculated according to the Cobb-
Douglas production function:

C = q · Eα ·Bβ (12)

where C denotes total catch and B total biomass, both in weight, q the
catchability and E the effort. α and β are the elasticity parameters as-
sociated to labor and capital (biomass in this case), respectively. These
parameters are associated to the existing technology.

As α and β parameters depend on the stock and the technology, Cobb-
Douglas function is applied at metier level. Thus, the catch of a certain
fleet f is given by:

Cf =
∑
m∈Mf

qf,m ·Bβf,m · (Ef · δf,m)αf,m (13)

where Mf represents the set of metiers of fleet f and δ the effort share
among metiers.

Derivation of Catch-at-age. Once the total catch is calculated,
it is divided into catch at age using selectivity at age, sa,f,m, and biomass
at age in the population, Ba:

Ca,f,m =
Cf,m∑

a sa,f,m ·Ba
· sa,f,m ·Ba (14)

Derivation of equation 14:
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� If the whole population were accessible to the gear, the catch of age
a would be:

sa,f,m ·Ba

� Thus, if the whole population were accessible to the gear, the total
catch we could obtain would be:∑

a

sa,f,m ·Ba

� But, the actual total catch is Cf , so theoretically the proportion of
the population that have been accessible is 1:

Ca,f,m =
Cf,m∑

a sa,f,m ·Ba

� Then, if we assume the population is homogeneously distributed we
arrive to equation 14.

The catch at age is then further disaggregated in landings- and discards-
at-age using landings’ and discards’ specific selectivity:

La,f,m =
sla,f,m
sa,f,m

· Ca,f,m and Da,f,m =
sda,f,m
sa,f,m

· Ca,f,m (15)

CobbDouglasAge: Cobb-Douglass production function at age-
class level. The catch of the fleets is calculated according to the Cobb-
Douglas production function applied at age-class level, i.e.:

C =
∑
a

Ca = qa · Eαa ·Bβaa (16)

where C denotes catch and B biomass, both in weight, q the catcha-
bility, E the effort and a the subscript for age. α and β are the elasticity
parameters associated to labor and capital (biomass in this case) respec-
tively. These parameters are associated to the existing technology.

As α and β parameters dependent on age classes and technology, Cobb-
Douglas function is applied at metier level. Thus, the catch of a certain
fleet f is given by:

Cf =
∑
a

Ca,f =
∑
m∈Mf

∑
a

qa,f,m ·B
βa,f,m
a · (Ef · δf,m)αa,f,m (17)

where Mf represents the set of metiers of fleet f , δ the effort share among
metiers and m is the subscript that indicates the metier.

1If all the age classes were not accessible or completely accessible we would replace sa,f,m
by ´sa,f,m = γa,f,m · sa,f,m where γa,f,m is the proportion of individuals of age a accessible
to metier m in fleet f .
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3.4.3 Costs functions

Cost functions have been developed in order to be used within fleets.om.
As cost structure could differ among fleets it has been defined as fourth
level function and it works at fleet level. In principle, it could be useful
in both tactic and strategic dynamics of fleets.

TotalCostsPower. This function sums up the fixed costs (FxC) and
the power functions of cost per unit of effort (CostPUE), crew share per
unit of landings (CSPUL) and capital cost per unit capital (CapCostPUC),
mathematically:

Costf =FxCf + CostPUEf,m ·
∑
m

(Ef · τf,m)γ1f,m+∑
st

∑
m

CSPULf,m,st · L
γ2f,m,st

f,m,st + CapCostPUCf · Cap
γ3f
f

(18)

The fixed cost are given at fleet level, f , cost per unit of effort at metier
level, m, and crew share at fleet, metier and stock, st, level. γ1f,m is the
exponent of effort at fleet and metier level in cost of effort addend, γ2f,m,st
the exponent of landing at fleet, metier and stock level in crew share cost
addend and γ3f is the exponent of capital at fleet level in capital cost
addend.
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A New FLR - S4 classes

A.1 FLBDsim class

FLBDsim class has been created in order to facilitate the simulation of pop-
ulation growth in populations aggregated in biomass, i.e. g(.) in equation
4. The population dynamics are simulated as follows:

By,s = By0,s0 + g(By0,s0) · εy,s − Cy0,s0 (19)

where B is the biomass, C the catch, y0 and s0 are the subscripts of
previous season’s year and season and ε is the uncertainty value in year y
and season s. It is a S4 class and has 10 slots:

name, desc, range : Slots common to all FLR objects.
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model : character or formula. If character, it must coincide with an
already existing growth model. If formula, the parameters must be
slots in the object or elements of covar slot. Currently, there is
only one growth model available, ’PellaTom’ that corresponds with
Pella-Tomlinson growth model ( ?).

biomass : FLQuant to store biomass in weight. The dimension in quant,

unit and area must be equal to 1 and in the rest of the dimensions
it must be congruent with general simulation settings.

catch : FLQuant to store total catch in weight. The dimension in quant,

unit and area must be equal to 1 and in the rest of the dimensions
it must be congruent with general simulation settings.

uncertainty : FLQuant to store the error that is multiplied to the point
estimate of growth . The dimension in quant, unit and area must
be equal to 1 and in the rest of the dimensions it must be congruent
with general simulation settings. Thus, a different error can be used
for each year, season and iteration.

params : An array to store the parameters of the model. The dimensions
of the array are params, year, season, iter. The dimension in
year, season and iter must be congruent with general simulation
settings. Thus, a different set of parameters can be used for each
year, season and iteration.

covar : An FLQuants object. The elements of the list are used to store
covariables’ values and it is used to apply growth models with co-
variables. Its functionality is the same as in FLSR object.

A.2 FLSRSim class

FLSRsim class has been created in order to facilitate the simulation of
recruitment in age structured populations. The recruitment dynamics are
simulated as follows:

Ry,s = Φ(Sy−tl0,s−tl1 , covarsy−tl0,s−tl1) · εy,s · ρy,s (20)

where Ry,s is the recruitment in year y and season s, Φ is the stock-
recruitment model, tl0 and tl1 are the year and season lag between spawn-
ing and recruitment, respectively, Sy−tl0,tl1 and covarsy−tl0,s−tl1 are the
stock index and covariables in year y − tl0 and season tl1, εy,s is the
uncertainty value in year y and season s and ρy,s is the proportion of
recruitment that recruits in year y and season s and is produced by stock
index S in year y − tl0 and season tl1 .

rec: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store recruit-
ment.

ssb: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store SSB or
the stock index used in the stock-recruitment relationship.

covar: An FLQuants to store the covariables used in the stock-recruitment
relationship. For details on the use of this slot look at the description
of FLSR class.
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uncertainty: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store
the uncertainty related to stock-recruitment process. The content
of this slot is multiplied to the point estimate of recruitment. As
its effect is multiplicative, then set it equal to 1 for all year, season
and iteration if uncertainty is not going to be considered around
stock-recruitment curve.

proportion: An FLQuant with dimension [1, ny, 1, ns, 1, it] used to store
the proportion of the recruitment produced by stock index in year
y−timelag[1, s] and season timelag[2, s] that recruits in year y and
season s. The content of this slot is multiplied to the point estimate
of recruitment. As its effect is multiplicative, then set it equal to 1
if all the recruitment produced by certain stock index is recruited
at the same time and set it equal to 0 if none of the recruitment
produced by certain stock index is recruited in that season.

model: Character string or formula. If character it specifies the name of
the function used to simulate the recruitment. If formula the left
hand side of ∼ must be equal to rec and the elements in right hand
side must be among ssb, covars and params.

params: An array with dimension [nparams, ny, ns, it], thus, the pa-
rameters may be year, season and iteration dependent. Year dimen-
sion in parameters may be useful to model regime shifts.

timelag: A matrix with dimension [2,ns]. This object indicates the
time lag between spawning and recruitment in each season. For each
season, the element in the first row indicates the age at recruitment
and the element in the second row indicates the season at which the
recruitment was spawn.

B Graphical representation of FLR Ob-
jects
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Figure 3: FLBiol object

Figure 4: FLFleetExt object
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Figure 5: FLSRsim object

Figure 6: FLBDsim object
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Figure 7: FLIndex object

Figure 8: FLStock object
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