Zebrafish is a small freshwater fish that shares many genetic characteristics with vertebrates and for this reason it is widely used as a model for human diseases (such as cancer, cardiovascular, metabolic and neurological dysfunctions), development of new drugs and as a model for eco-toxicology.

AZTI pioneered in Europe the use of zebrafish as a model to study the effects of food ingredients and food contaminants and applied this knowledge to human as well as animal nutrition and health.

Why is zebrafish a model of choice?

  • Alternative to the use of laboratory animals (EU Directive 2010/63/EU).
  • Natural response of living organisms to functional feed ingredients.
  • Low cost.
  • Rapid response.
  • The results obtained are realistic and reliable.

Analytical portfolio (food research, aquaculture, ecotoxicology)

Efficacy tests of natural extract and functional molecules in vivo.

Antioxidant capacity

  • Evaluation of protection against:
    • Production of reactive oxygen species (ROS).
    • Lipid peroxidation.
    • Damage at protein level.
    • Cellular death.
  • Evaluation of gene expression (antioxidant genes).

Anti-inflammatory capacity

  • Evaluation of inflammation reduction under wound induced.
  • Evaluation of inflammation reduction under a chemical stress.

Immunomodulation

  • Evaluation of the expression level of a panel of immune genes belong to:
    • Proinflammatory cascade (cytokines etc…).
    • Cellular receptors (TLRs).
    • Anti-microbial peptides (defensins).

Lipid metabolism

  • Evaluation of the fat reserve reduction.
  • Lipid metabolism key genes expressionz.
  • Lipid profile analysis (SFA, MUFA, PUFA).

Antimicrobial activity

  • Evaluation of cumulative mortality under infection (bacterial challenge test).

Interaction with microbiota

  • Study of beneficial effects of probiotics and prebiotics.
  • Evaluation of microbial community under a functional diet (Metabarcoding).
  • Study of the effect of microbiota on obesity.

Toxicity tests of individual and mixed food and environmental contaminants (nanoparticles, microplastics, metals, PAHs, pesticides…).

  • OECD 236 Fish embryo acute toxicity test.
  • OECD 305 Bioaccumulation in Fish: aqueous and dietary exposure.

References

  • Pérez-Ramos, A., Mohedano, M. L., Pardo, M. A. and López, P. (2018) β-glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Frontiers in Microbiology (en prensa).
  • Arias-Jayo, N.; Alonso-Saez L.; Ramirez-Garcia, A.; Rodriguez-Herrera, A.; Abecia L.; Pardo M.A. (2018) High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in Zebrafish. Microbial Ecology; doi: 10.1007/s00248-018-1198-9.
  • Arias-Jayo, N., Alonso-Saez L., Ramirez-Garcia, A.; Pardo M.A. (2018) Zebrafish axenic Larvae Colonization with Human Intestinal Microbiota. Zebrafish 2018, 15(2):96-106.
  • Perez-Ramos A., Mohedano M. L., Pardo M.A., Lopez P. (2018) B-glucan-producing Pediococcus parvulus 2.6: Characterization of its probiotic and immunomodulatory properties Ann Nutr Metab 2018, 72:70-70.
  • Arias-Jayo, N., Ramirez-Garcia, A., Pardo M.A. (2017) Zebrafish gut as a house for human intestinal bacteria. JISM, 2017,3.
  • Nácher-Vázquez, M., Iturria, I., Zarour, K., Mohedano, M.L., Aznar, R., Pardo, M.A. and Paloma López, P. (2017) Dextran production by Lactobacillus sakei MN1 coincides with reduced autoagglutination, biofilm formation and epithelial cell adhesion Carbohydrate Polymers. Carbohydrates 168: 22-31.
  • Granby, K., Rainieri, S., Romme Ramussen, R., Kottermann, M.J.J., Sloth, J., Cederberg, T.L., Barranco, A., Marques, A., Larsen, B. (2018). The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). Environmental Research 164: 430-443.
  • Lackman C., Martinez Santos M., Rainieri, S., Barranco A., Hollert, H., Spirhanzlova, P., Velki, M., Seiler, T.B. (2018). Novel procedures for whole organism detection and quantification of fluorescence as a measurement for oxidative stress in zebrafish (Danio rerio) larvae. Chemosphere 197:200-209. 10.1016/j.chemosphere.2018.01.045.
  • Rainieri, S., Conlledo, N., Larsen, B., Granby, K., Barranco, A. (2018) Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environmental Research 162:135-143. doi: 10.1016/j.envres.2017.12.019.
  • Rainieri, S., Conlledo, N., Langerholc, T., Madorran, E., Sala, M., Barranco, A. (2017) Toxic effects of perfluorinated compounds at human cellular level and on a model vertebrate. Food and Chemical Toxicology104:14-25 doi: 10.1016/j.fct.2017.02.041.
  • Barranco et al. (2016) Detection of exposure effects of mixtures of heavy polycyclic aromatic hydrocarbons in zebrafish embryos. J App Toxicol (In Press) doi: 10.1002/jat.3353.
  • Molina-Fernandez, N., et al. (2016) Method for quantifying ionic pharmaceuticals in aqueous samples, lumpfish (Cyclopterus lumpus) roe, zebrafish (Danio rerio) eleutheroembryos and evaluation of their bioconcentration in zebrafish eleutheroembryos. Env. Sci Poll. Res. (In Press) doi:10.​1007/​s11356-016-6671-8.
  • Caro, M., et al. (2016) Zebrafish dives into food research. Food & Function 15: 2615-23.
  • Zarco-Fernández, S., et al. (2016) Bioconcentration of ionic cadmium and cadmium selenide quantum dots in zebrafish larvae. Chemosphere148: 328-335.
  • Valcarce, et al. (2015) Effect of diet supplementation with a commercial probiotic containing Pediococcus acidilactici (Lindner, 1887) on the expression of five quality markers in zebrafish (Danio rerio (Hamilton, 1822)) testis. J. Appl. Icthiol. 31: 18-21.
  • Russo, et al. (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl. Microbiol. Biotechnol. 99: 3479-3490.
  • Oyarbide et al. (2015) Use of gnotobiotic zebrafish to study Vibrio anguillarum pathogenicity. Zebrafish. 12: 71-80.
  • López-Serrano Oliver et al.(2015). Bioconcentration of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos. Nanotoxicol. 4: 1-8.
  • Pardal et al. (2014) Resveratrol and piceid metabolites and their fat-reduction effects in zebrafish larvae. Zebrafish, 11: 32–40.
  • Olasagasti et al. (2014) Toxic effects of colloidal nanosilver on zebrafish embryos. J. Appl. Toxicol. 34: 562-575.
  • Oyarbide et al. (2012) Zebrafish (Danio rerio) larvae as a system to test the efficacy of polysaccharides as immunostimulants. Zebrafish 9: 74-84.